Reactions of $[R_2P(E)]_2NH$ (R = Ph or Prⁱ, E = S or Se) with $[Ru_3(CO)_{12}]$: crystal structures of $[Ru_4(\mu_4-Se)_2(\mu-CO)(CO)_8 \{(Ph_2P)_2NH-P,P'\}]$, $[Ru_4(\mu_4-S)_2(\mu-CO)(CO)_8\{(Pr^i_2P)_2NH-P,P'\}]$ and $[Ru_3(\mu_3-S)_2(CO)_7\{(Ph_2P)_2NH-P,P'\}]$

Alexandra M. Z. Slawin, Martin B. Smith and J. Derek Woollins*

Department of Chemistry, Loughborough University, Loughborough, Leics., UK LE11 3TU

Oxidative addition of the chalcogenides $[R_2P(E)]_2NH$ (R = Ph or Prⁱ, E = S or Se) to the metal carbonyl $[Ru_3(CO)_{12}]$ in the presence of Me₃NO (*ca.* 1:1:1 ratio) in toluene gave, after chromatographic separation (preparative TLC), new substituted tri- and tetra-nuclear capped sulfido (or selenido) ruthenium carbonyl complexes with $(Ph_2P)_2NH$ or $(Pr^i_2P)_2NH$ ligands. All compounds have been characterised by a combination of multinuclear NMR [³¹P-{¹H} and ¹H], IR spectroscopy and elemental analysis. Furthermore the solid-state structures of three representative examples, namely $[Ru_4(\mu_4-Se)_2(\mu-CO)(CO)_8((Ph_2P)_2NH-P,P')]$, $[Ru_4(\mu_4-S)_2-(\mu-CO)(CO)_8((Pr^i_2P)_2NH-P,P')]$ and $[Ru_3(\mu_3-S)_2(CO)_7((Ph_2P)_2NH-P,P')]$ have been determined by single-crystal X-ray diffraction. In all these cases the integrity of the $[R_2P(E)]_2NH$ ligand, under the experimental conditions employed, is not retained.

Transition-metal chalcogenide compounds have received considerable attention as exemplified by the plethora of publications reported within the last few years.^{1,2} One noticeable feature of many of these cluster compounds is the presence of both bridging chalcogenide anions and also tertiary phosphorus(III) ligands. The use of phosphorus(v) chalcogenide compounds, R₃PE, (E = chalcogen, R = alkyl or aryl group) as sources of R₃P and E has previously been documented. Recent work by Predieri and co-workers² demonstrated that [Ph₂P-(Se)]₂CH₂ undergoes oxidative addition to the metal carbonyl [Ru₃(CO)₁₂] affording a range of clusters (see later) including the novel cubane [Ru₄(μ_3 -Se)₄(CO)₁₀(dppm)] [dppm = (Ph₂P)₂-CH₂].

We, and others, have been interested in the co-ordination chemistry of both $(Ph_2P)_2NH$ and $[{Ph_2P(E)}_2N]^-$ (E = O, S or Se), the latter derived upon deprotonation of [Ph₂P(E)]₂NH with base.³ Although numerous examples of bi- and tri-metallic complexes with the amine-backboned ligand (Ph₂P)₂NH (dppa), closely related to (Ph₂P)₂CH₂, have been described, to our knowledge there are no reports of such compounds with ruthenium.⁴ Diruthenium complexes with the diphosphazene bridges $(RO)_2PNEtP(OR)_2$ $(R = Me \text{ or } Pr^i)$ have previously been reported.⁵ Here we describe our results on the reactivity of the tetraaryl-substituted $[Ph_2P(E)]_2NH$ (E = S and Se), closely related to $[Ph_2P(E)]_2CH_2$ (E = S or Se), and the tetraalkylsubstituted [Prⁱ₂P(S)]₂NH, with [Ru₃(CO)₁₂]. The clusters [Ru₄- $(\mu_4-Se)_2(\mu-CO)(CO)_8\{(Ph_2P)_2NH-P,P'\}],$ $[Ru_4(\mu_4-S)_2(\mu-CO) (CO)_{8}\{(Pr_{2}^{i}P)_{2}NH-P,P'\}$ and $[Ru_{3}(\mu_{3}-S)_{2}(CO)_{7}\{(Ph_{2}P)_{2}NH-P,P'\}]$ P,P'] have been fully characterised, including by X-ray crystallography. Interestingly the recently reported reaction of the mixed phosphorus(v) compound Ph2P(Se)NPPh2PPh2NP(Se)-Ph₂ with [Ru₃(CO)₁₂] in the presence of Me₃NO afforded an unusual triruthenium cluster, namely $[Ru_3(CO)_6(\mu_3-Se)_2(\mu-$ PPh₂)(Ph₂PNPPh₂NPPh₂-*N*,*P*,*P*)], containing both the [Ph₂P-NPPh₂NPPh₂]⁻ ligand in a novel tridentate bonding mode and also capping diselenide ligands.⁶

Experimental

General

All reactions were performed under a nitrogen atmosphere using predried C_6H_5Me and standard Schlenk techniques. The

compounds $[R_2P(E)]_2NH$ (R = Ph or Prⁱ; E = S and Se, but not all permutations) were synthesized as reported previously.⁷⁻⁹ The compounds $[Ru_3(CO)_{12}]$ and Me_3NO were used as supplied by Aldrich without further purification.

JALTON

Infrared spectra were recorded either as KBr pellets or in CH_2Cl_2 on a Perkin-Elmer System 2000 Fourier-transform spectrometer, ¹H NMR spectra (250 MHz) on a Bruker AC250 Fourier-transform spectrometer with chemical shifts (δ) in ppm (\pm 0.01) to high frequency of SiMe₄ and coupling constants (*J*) in Hz (\pm 0.1 Hz), ³¹P-{¹H} NMR spectra (36.2 or 101.3 MHz) either on a JEOL FX90Q or Bruker AC250 Fourier-transform spectrometer with chemical shifts (δ) in ppm (\pm 0.1) to high frequency of 85% H₃PO₄ and coupling constants (*J*) in Hz (\pm 3). All NMR spectra were measured in CDCl₃ unless otherwise stated. Elemental analyses (Perkin-Elmer 2400 CHN elemental analyser) were performed by the Loughborough University Service within the Department of Chemistry.

Preparations

Reaction of [Ru₃(CO)₁₂] with [Ph₂P(Se)]₂NH. The reagents [Ru₃(CO)₁₂] (0.100 g, 0.156 mmol), [Ph₂P(Se)]₂NH (0.086 g, 0.158 mmol) and Me₃NO (0.013 g, 0.173 mmol) were refluxed in C₆H₅Me (90 cm³) for 1.5 h under N₂. The resulting dark red solution was evaporated to dryness and the residue dissolved in CH₂Cl₂ (2 cm³). One product $[Ru_4(\mu_4-Se)_2(\mu-CO)(CO)_8-$ {(Ph₂P)₂NH-P,P'}]1 (distinct deep orange band) was separated by preparative thin-layer chromatography [SiO₂; eluent, CH₂Cl₂-light petroleum (b.p. 40-60 °C) (2:1, v/v)]. In addition several other bands were collected from which only minor amounts of uncharacterised material were obtained. Cluster 1 was recrystallised from CH₂Cl₂ (1.5 cm³) and light petroleum (15 cm³), the solid washed with portions of light petroleum $(2 \times 2 \text{ cm}^3)$ and dried in vacuo. Yield: 0.074 g, 39% [Found (Calc. for C₃₃H₂₂NO_{9.5}P₂Ru₄Se₂): C, 32.9 (32.8); H, 1.0 (1.85); N, 0.95 (1.15)%]. IR: (KBr) 3263 (V_{NH}); (CH₂Cl₂) 2046m, 2013vs, 1967m and 1808w cm $^{-1}$ (v_{co}). NMR: $^{31}P-\{^{1}H\},$ δ 67.3; ¹H, δ 7.53–7.41 (aromatic H) and 4.86 (NH) [²J(P–NH) 10 Hz]. Slow diffusion of light petroleum into a CH₂Cl₂ solution of complex 1 over the course of ca. 3 d gave crystals suitable for X-ray crystallography.

In a similar manner the cluster $[Ru_4(\mu_4\text{-}S)_2(\mu\text{-}CO)(CO)_8\text{-}{(Pr^i_2P)_2NH\text{-}P,P'}]$ 2 was isolated in low yield (9%) from

 $\begin{array}{l} [Ru_{3}(CO)_{12}] \mbox{ and } [Pr^{i}_{2}P(S)]_{2}NH \ [Found \ (Calc. \ for \ C_{21}H_{29}NO_{9}-P_{2}Ru_{4}S_{2}): \ C, \ 26.05 \ (26.0); \ H, \ 2.65 \ (3.0); \ N, \ 1.5 \ (1.45)\%]. \ IR: \ (KBr) \ 3291 \ (\nu_{NH}); \ (CH_{2}Cl_{2}) \ 2048m, \ 2014vs, \ 2005m \ (sh), \ 1984w, \ 1969m, \ 1939w \ and \ 1811w \ cm^{-1} \ (\nu_{CO}). \ NMR: \ ^{31}P-\{^{1}H\}, \ \delta \ 96.0; \ ^{1}H, \ \delta \ 3.11 \ (NH) \ [^{2}J(P-NH) \ 10 \ Hz] \ in \ addition \ to \ the \ expected \ isopropyl \ resonances. \ Slow \ diffusion \ of \ light \ petroleum \ into \ a \ CH_{2}Cl_{2} \ solution \ of \ complex \ 2 \ over \ the \ course \ of \ several \ months \ gave \ crystals \ suitable \ for \ X-ray \ crystallography. \end{array}$

Reaction of [Ru₃(CO)₁₂] with [Ph₂P(S)]₂NH. The reagents [Ru₃(CO)₁₂] (0.102 g, 0.160 mmol), [Ph₂P(S)]₂NH (0.072 g, 0.160 mmol) and Me₃NO (0.014 g, 0.186 mmol) were refluxed in C₆H₅Me (90 cm³) for 1.5 h under N₂. The resulting dark orange solution was evaporated to dryness and the residue dissolved in CH_2Cl_2 (2 cm³). Two major products **3** (deep orange band) and then 4 (deep red band) were separated by preparative thin-layer chromatography [SiO₂; eluent, dichloromethanelight petroleum (1:1, v/v)] in addition to several other bands. Cluster 3 was isolated as an orange solid. Yield: 0.048 g, 32% [Found (Calc. for C_{31.50}H₂₂ClNO₇P₂Ru₃S₂): C, 37.1 (38.15); H, 2.1 (2.25); N, 1.45 (1.4)%]. IR: (KBr) 3313, 3302, 3281 (v_{NH}); (CH₂Cl₂) 2068m, 2056s, 2013vs, 1989m (sh) and 1964m cm (v_{C0}). NMR: ³¹P-{¹H}, δ 106.8 and 75.0, 70.9 [²J(PP) 38 Hz] (*ca.* 1:1 ratio of two species **3a** and **3b** from integration); ¹H, δ 7.71-7.38 (aromatic H), 4.75 and 3.07 (both NH) [²J(P-NH) 7.5 Hz]. Slow diffusion of light petroleum into a CH2Cl2 solution of complex 3 over the course of ca. 4 d gave crystals of $[Ru_3(\mu_3-S)_2(CO)_7\{(Ph_2P)_2NH-P,P'\}]$ 3a suitable for X-ray crystallography. The cluster [Ru₄(µ₄-S)₂(µ-CO)(CO)₈{(Ph₂P)₂NH-P,P] 4 was recrystallised from CH_2Cl_2 (1 cm³) and light petroleum (15 cm³), the solid washed with portions of light petroleum $(2 \times 3 \text{ cm}^3)$ and dried *in vacuo*. Yield: 0.051 g, 29% [Found (Calc. for C₃₃H₂₁NO₉P₂Ru₄S₂): C, 36.1 (35.85); H, 1.65 (1.9); N, 1.1 (1.25)%]. IR: (KBr) 3266 (v_{NH}); (CH₂Cl₂) 2050m, 2016vs, 1971m and 1814m cm⁻¹ (v_{CO}). NMR: ³¹P-{¹H}, δ 71.6; ¹H, δ 7.49–7.41 (aromatic H) and 4.39 (NH) [²J(P–NH) 10 Hz].

X-Ray crystallography

The crystal structures of complexes **1–3a** were obtained using a Rigaku AFC7S diffractometer with graphite-monochromated (Cu-K α , $\lambda = 1.541$ 78 Å) radiation and ω scans at room temperature. Details of the data collections and refinements are given in Table 1. Empirical absorption corrections (DIFABS)¹⁰ were applied. The structures were solved by the heavy-atom method.¹¹ Compound **1** contained 0.5 H₂O as a solvent of crystallisation. The O atom was refined isotropically and the H atoms were not located. In **3a** a 0.5 CH₂Cl₂ solvate was refined

Fig. 1 Molecular structure of $[Ru_4(\mu_4-Se)_2(\mu-CO)(CO)_8\{(Ph_2P)_2NH-P,P\}]\cdot 0.5H_2O$ **1** (CH, NH protons and solvent molecules omitted for clarity)

with one 50% Cl atom anisotropic and the 50% C and two 25% Cl sites isotropic; the partial weight H atoms were not located. All of the other non-hydrogen atoms were refined anisotropically. The CH atoms were idealised and fixed (C–H 0.95 Å). No additional constraints or restraints were applied. Refinements (based on *F*) were by full-matrix least-squares methods. Calculations were performed using TEXSAN.¹²

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/489.

Results and Discussion

The synthesis and spectroscopic characterisation of [Ru₄(µ₄- $\{(Ph_2P)_2CH_2-P,P'\}$] II and $[Ru_4(\mu_3-Se)_4(CO)_{10}\{(Ph_2P)_2CH_2-P_3(P_3)_2(P_3$ P,P] III containing the carbon-spaced diphosphine ligand (Ph₂P)₂CH₂, was recently reported by Predieri and co-workers.² Adopting a similar procedure, we now find that analogues of I and II can be prepared in reasonable yields using the corresponding compounds $[Ph_2P(E)]_2NH$ (E = Se or S). Hence refluxing [Ru₃(CO)₁₂], [Ph₂P(Se)]₂NH and the oxidative decarbonylation reagent Me₃NO (ca. 1:1:1.1 ratio) in C₆H₅Me under N₂ affords $[Ru_4(\mu_4-Se)_2(\mu-CO)(CO)_8\{(Ph_2P)_2NH-P,P'\}]$ 1 in 39% yield after chromatography (preperative TLC) compared to only 5% yield reported for I.² We also observe the formation of a variety of other minor products from this reaction; the exact identity of these remains currently unknown. Complex 1 was initially characterised by ${}^{31}P-{}^{1}H$ and ${}^{1}H$ NMR, IR spectroscopy and elemental analysis. The ³¹P-{¹H} NMR spectrum showed a singlet at δ 67.3 shifted to high frequency with respect to free dppa (δ 43.2) by *ca*. 24 ppm. In the ¹H NMR spectrum (CDCl₃) the expected triplet at δ 4.86 for the NH proton [²J(P-NH) 10 Hz] was observed, suggesting the equivalence of the two phosphorus nuclei. In contrast, for free $(\hat{Ph}_2P)_2NH \delta(NH) 3.15 [^2 J(\hat{P}-NH) 5 Hz]$. In the IR spectrum (KBr disc) of 1 a sharp band at 3263 cm⁻¹ was observed and assigned as $\nu_{\text{NH}},$ whilst in solution (CH_2Cl_2) bands at 2046, 2013, 1967 and 1808 cm^{-1} indicate that 1 contains both terminal and bridging carbonyl ligands. Under similar conditions reaction of the tetraalkyl-substituted disulfide [Pri,P(S)],NH gave $[Ru_4(\mu_4-S)_2(\mu-CO)(CO)_8\{(Pr_2^iP)_2NH\}]$ 2 albeit in low yield (9%) along with several other uncharacterised products. The ³¹P-{¹H} NMR spectrum showed a singlet at δ 96.0 {*cf.* 91.2 ppm for [Prⁱ₂P(S)]₂NH}⁹ and in the ¹H NMR spectrum (CDCl₃) the expected triplet at δ 3.11 for the NH proton [²*J*(P–N*H*) 10 Hz] was observed, suggesting again the equivalence of the two phosphorus nuclei. Solutions of the nonacarbonyls **1** and **2** (or **4**, see later) are stable in air for extended periods (*ca.* 20 d) without decomposition. Alternatively when compound **1** (or 4) was refluxed in C₆H₅Me (under N₂) for 24 h no significant decomposition was noted. In the IR spectrum (KBr disc) of **2** a sharp band at 3291 cm⁻¹ assigned to v_{NH} was also observed whilst in solution (CH₂Cl₂) bands at 2048, 2014, 2005, 1984, 1969, 1939 and 1811 cm⁻¹ indicate that **2** contains both terminal and bridging carbonyl ligands.

The structures of **1** and **2** have been established by X-ray crystallography (Figs. 1, 2 and Table 2 respectively). Compounds **1** and **2** are essentially isostructural. The clusters adopt octahedral geometries with the four ruthenium atoms in a

Fig. 2 Molecular structure of $[Ru_4(\mu_4-S)_2(\mu-CO)(CO)_8\{(Pr_2^iP)_2NH-P,P\}]$ **2** showing the core geometry only (isopropyl groups and the NH proton omitted for clarity)

square plane [maximum deviation from the Ru(1)-Ru(2)-Ru(3)-Ru(4) mean plane is 0.013 and 0.04 Å for 1 and 2 respectively] and the chalcogenide dianions lying above and below the Ru₄ plane [in 1 atoms Se(1) and Se(2) lie 1.64 and 1.65 Å above and below the Ru_4 plane whilst in **2** atoms S(1) and S(2) lie 1.51 and 1.55 Å from the plane]. The carbonyl group which bridges Ru(1) and Ru(2) is almost coplanar with the Ru₄ plane [the C(3) atom lies 0.03 and 0.09 Å out of the Ru_4 plane for 1 and 2 respectively]. The Ru-Ru bond lengths are in the range 2.737(2) [Ru(3)-Ru(4)]-2.851(2) [Ru(1)-Ru(4)] Å for 1 and 2.729(1) [Ru(1)-Ru(2)]-2.797(1) [Ru(2)-Ru(3)] Å for 2. The P–N–P ligand is inclined to the Ru_4 plane (43 and 41° for 1 and 2 respectively) and furthermore in these ligands the P-N bonds are normal single bonds and the N atom is almost perfectly trigonal. We are unaware of any metal complexes of (Pri₂P)₂NH although there are a few reports on $[{Pr_2^iP(S)}_2N]^{-.9,13}$

Fig. 3 Molecular structure of $[Ru_3(\mu_3-S)_2(CO)_7\{(Ph_2P)_2NH-PP'\}]\cdot 0.5CH_2Cl_2$ **3a** (CH, NH protons and solvent molecules omitted for clarity)

 Table 1
 Details of the X-ray data collections and refinements for compounds 1–3a

	1	2	3a
Empirical formula	C33H22NO95P2Ru4Se2	C ₂₁ H ₂₉ NO ₉ P ₂ Ru ₄ S ₂	C31 50H22ClNO7P2Ru3S2
M	1208.69	969.81	991.25
Crystal colour, habit	Red, needle	Orange-red, needle	Red, block
Crystal dimensions/mm	0.01 imes 0.06 imes 0.28	$0.10 \times 0.13 \times 0.30$	0.20 imes 0.30 imes 0.30
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/n$	$P2_1/n$	$P\bar{1}$
a/Å	15.656(3)	13.363(2)	12.276(2)
b/Å	16.971(4)	13.680(2)	13.897(1)
c/Å	16.488(3)	17.294(2)	11.660(2)
$\alpha/^{\circ}$			104.32(1)
β/°	92.87(1)	90.78(1)	99.15(1)
γ/°			92.71(1)
$U/Å^3$	4375	3161	1895
Ζ	4	4	2
$D_{\rm c}/{\rm g~cm^3}$	1.84	2.04	1.74
μ/mm^{-1}	13.98	17.80	12.42
$2\theta_{\rm max}/^{\circ}$	120.3	120.2	120.2
F(000)	2308	1888	970
Measured reflections	7051	5185	5963
Independent reflections (R_{int})	6773 (0.098)	4947 (0.043)	5658 (0.072)
Observed reflections $[I > 3.00\sigma(I)]$	3485	3548	4910
Reflection/parameter ratio	7.5:1	10.1:1	11.4:1
Minimum, maximum transmission	0.67, 1.00	0.59, 1.00	0.90, 1.00
<i>P</i> in weighting scheme*	0.005	0.002	0.004
No. variables	465	353	437
Final <i>R</i> , <i>R</i> ′*	0.044, 0.050	0.032, 0.031	0.038, 0.041
Maximum Δ/σ	0.52	0.01	0.52
Largest difference peak, hole/e ${ m \AA^{-3}}$	0.98, -0.48	0.50, -0.53	1.05, -0.79
ices and weighting scheme defined in ref	19		

* All *R* indices and weighting scheme defined in ref. 12.

Table 2 Selected bond lengths (Å) and angles (°) for compounds 1 and 2

	1 (E = Se)	2 (E = S)		1 (E = Se)	2 (E = S)
Ru(1)-Ru(2)	2.758(2)	2.729(1)	Ru(3)–E(2)	2.555(2)	2.469(2)
Ru(1) - Ru(4)	2.851(2)	2.787(1)	Ru(3) - P(1)	2.287(4)	2.322(2)
Ru(1)-E(1)	2.578(2)	2.516(2)	Ru(4) - E(1)	2.552(2)	2.439(2)
Ru(1)-E(2)	2.576(2)	2.470(2)	Ru(4)-E(2)	2.579(2)	2.494(2)
Ru(1) - C(3)	2.04(2)	2.031(7)	Ru(4)-P(2)	2.298(4)	2.304(2)
Ru(2)–Ru(3)	2.828(2)	2.797(1)	Ru–C range (terminal)	1.80(2) - 1.91(2)	1.846(8)-1.899(8)
Ru(2)–E(1)	2.571(2)	2.450(2)	P(1)-N	1.675(11)	1.694(5)
Ru(2)–E(2)	2.589(2)	2.525(2)	P(2)–N	1.694(11)	1.687(6)
Ru(2)–C(3)	2.03(2)	2.032(7)	C(3)–O(3) (bridging)	1.16(2)	1.167(8)
Ru(3)–Ru(4)	2.737(2)	2.730(1)	C–O range (terminal)	1.09(2) - 1.19(2)	1.13(1) - 1.16(1)
Ru(3)–E(1)	2.567(2)	2.457(2)	-		
$\mathbf{D}_{\mathbf{y}}(0) = \mathbf{D}_{\mathbf{y}}(1) = \mathbf{D}_{\mathbf{y}}(1)$	90.7(1)	00.0(1)	$D_{11}(4) = D_{11}(2) = D(1)$	02 9(1)	01 9(1)
$D_{11}(2) = D_{11}(1) = D_{11}(4)$	63.7(1) 57.5(1)	55 5(1)	E(1) = E(2) = E(2)	33.8(1) 70.0(1)	51.5(1) 76.6(1)
Ru(2) = Ru(1) = E(1) Ru(2) = Ru(1) = E(2)	57.3(1) 59.0(1)	57.0(1)	E(1) = Ru(3) = E(2) E(1) = Dy(2) = D(1)	79.9(1) 151.1(1)	(0.0(1))
Ru(2) - Ru(1) - E(2) Ru(4) - Ru(1) - E(1)	55 Q(1)	57.9(1) 54 5(1)	E(1) - Ru(3) - P(1) E(2) - Pu(2) - D(1)	131.1(1) 97.0(1)	143.0(1) 04.8(1)
Ru(4) = Ru(1) = E(1) Ru(4) = Ru(1) = E(2)	50.0(1) 56.5(1)	54.5(1) 56.9(1)	E(2) = Ru(3) = P(1) Pu(1) = Pu(4) = Pu(2)	07.0(1) 90.9(1)	94.0(1) 00.1(1)
Ru(4) = Ru(1) = E(2)	30.3(1) 70.2(1)	30.2(1) 75 5(1)	Ru(1) = Ru(4) = Ru(3) Pu(1) = Pu(4) = E(1)	09.0(1) 56 7(1)	90.1(1) 57.1(1)
E(1) = Ku(1) = E(2) $D_{11}(1) = D_{12}(2)$ $D_{12}(2) = D_{12}(2)$	79.3(1)	75.5(1) 80.0(1)	Ru(1) = Ru(4) = E(1) Pu(1) = Pu(4) = E(2)	50.7(1)	57.1(1) 55 $4(1)$
Ru(1) = Ru(2) = Ru(3) Ru(1) = Ru(2) = E(1)	09.9(1) 57.7(1)	69.9(1) 57.9(1)	Ru(1) = Ru(4) = E(2) Pu(1) = Pu(4) = D(2)	00.4(1) 199 7(1)	00.4(1) 199.9(1)
Ru(1) - Ru(2) - E(1)	57.7(1)	57.8(1)	Ru(1) - Ru(4) - P(2) Pu(2) - Pu(4) - E(1)	138.7(1)	132.2(1)
Ru(1) - Ru(2) - E(2) Pu(2) - Pu(2) - E(1)	57.3(1)	55.9(1)	Ru(3) - Ru(4) - E(1)	58.0(1)	50.4(1)
Ru(3) - Ru(2) - E(1) Ru(2) - Ru(2) - E(2)	50.5(1) 56 1(1)	55 Q(1)	Ru(3) - Ru(4) - E(2) Pu(2) - Pu(4) - P(2)	37.4(1) 09.6(1)	50.2(1) 05.7(1)
Ru(3) - Ru(2) - E(2)	30.1(1) 70.2(1)	33.0(1) 75.6(1)	Ru(3) - Ru(4) - P(2)	92.0(1) 70.9(1)	93.7(1) 76.4(1)
E(1) = Ru(2) = E(2) Du(2) = Du(2) = Du(4)	79.2(1)	73.0(1) 90.9(1)	E(1) = Ru(4) = E(2) E(1) = Dy(4) = D(2)	79.0(1) 140.5(1)	70.4(1) 159.0(1)
Ru(2) = Ru(3) = Ru(4) Ru(2) = Ru(2) = E(1)	90.0(1) 56 7(1)	09.0(1) 55.1(1)	E(1) - Ru(4) - P(2) E(2) - Pu(4) - P(2)	149.3(1) 01.9(1)	132.0(1)
Ru(2) = Ru(3) = E(1) Ru(2) = Ru(2) = E(2)	50.7(1)	55.1(1) 56.0(1)	E(2) = Ru(4) = P(2)	91.2(1) 64 4(1) 101 1(1)	09.3(0) 66.9(1) 105.0(1)
Ru(2) = Ru(3) = E(2) Ru(2) = Ru(2) = R(1)	J1.2(1)	30.9(1)	R_{1} R_{2} R_{1} R_{1} R_{2} R_{1} R_{1} R_{2} R_{1} R_{1} R_{1} R_{2} R_{1} R_{1	04.4(1) - 101.1(1) 110.0(4)	00.2(1) - 100.9(1)
Ru(2) = Ru(3) = P(1) Pu(4) = Pu(2) = E(1)	133.9(1)	144.4(1) 55 9(1)	Ru(3) = r(1) = IN(1) Pu(4) = P(2) = N(1)	110.9(4)	113.0(2)
Ru(4) = Ru(3) = E(1) Du(4) = Du(2) = E(2)	J7.4(1) 59 9(1)	55.0(1) 57.1(1)	Ru(4) = r(2) = IN(1) D(1) = NI(1) = D(9)	112.2(4)	103.0(2) 197.6(2)
Mu(4)=Ku(3)=E(2)	JO.2(1)	57.1(1)	$r(1)^{-1}N(1)^{-1}r(2)$	120.1(0)	121.0(3)

Table 3 Selected bond lengths (Å) and angles (°) for compound 3a

Ru(1)-Ru(3)	2.811(1)	Ru(3)–S(1)	2.406(2)
Ru(1)-S(1)	2.367(2)	Ru(3)-S(2)	2.411(2)
Ru(1)-S(2)	2.369(2)	Ru–C range	1.870(8)-
Ru(1) - P(1)	2.267(2)	Ũ	1.905(8)
Ru(2)-Ru(3)	2.771(1)	P(1)-N	1.691(5)
Ru(2)-S(1)	2.373(2)	P(2)-N	1.697(5)
Ru(2)-S(2)	2.372(2)	C–O range	1.132(8)-
Ru(2)-P(2)	2.281(2)	Ũ	1.149(9)
Ru(3)-Ru(1)-S(1)	54.6(1)	Ru(1)-Ru(3)-S(2)	53.3(1)
Ru(3)-Ru(1)-S(2)	54.7(1)	Ru(2)-Ru(3)-S(1)	54.0(1)
Ru(3)-Ru(1)-P(1)	134.6(1)	Ru(2)-Ru(3)-S(2)	54.0(1)
S(1)-Ru(1)-S(2)	80.9(1)	S(1)-Ru(3)-S(2)	79.3(1)
S(1)-Ru(1)-P(1)	92.9(1)	Ru(1)-S(1)-Ru(2)	97.4(1)
S(2)-Ru(1)-P(1)	93.3(1)	Ru(1)-S(1)-Ru(3)	72.1(1)
Ru(3)-Ru(2)-S(1)	55.1(1)	Ru(2)-S(1)-Ru(3)	70.9(1)
Ru(3)-Ru(2)-S(2)	55.3(1)	Ru(1)-S(2)-Ru(3)	97.3(1)
Ru(3)-Ru(2)-P(2)	136.0(1)	Ru(1)-S(2)-Ru(3)	72.0(1)
S(1)-Ru(2)-S(2)	80.8(1)	Ru(2)-S(2)-Ru(3)	70.8(1)
S(1)-Ru(2)-P(2)	92.2(1)	Ru(1)-P(1)-N	115.8(2)
S(2)-Ru(2)-P(2)	94.7(1)	Ru(2)-P(2)-N	114.5(2)
Ru(1)-Ru(3)-Ru(2)	79.3(1)	P(1)-N-P(2)	137.7(3)
Ru(1)-Ru(3)-S(1)	53.3(1)		

The corresponding reaction of the disulfide $[Ph_2P(S)]_2NH$ with $[Ru_3(CO)_{12}]$ yields, after chromatography, two major products identified as $[Ru_3(\mu_3-S)_2(CO)_7(Ph_2P)_2NH-P,P']$ **3** (32%) (two isomers) and $[Ru_4(\mu_4-S)_2(\mu-CO)(CO)_8(Ph_2P)_2NH-$ *P,P']*]**4**(29%). Compound**4**is ostensibly similar to both**1**and**2**described above and shows the expected spectroscopic proper $ties. In contrast the ³¹P-{¹H} NMR spectrum (CDCl₃) of$ **3**atambient temperature reveals the presence of two species**3a**and**3b**(*ca.*1:1 ratio by integration):**3a** $has <math>\delta$ 106.8 (*cf.* 43.2 for dppa) indicating equivalent phosphorus nuclei and **3b** exhibits an AB spectrum [δ 75.0 and 70.9, ²*J*(PP) 38 Hz] consistent with a compound containing unsymmetrical phosphorus nuclei. When an NMR sample was cooled in 10 °C increments from 0 to -50 °C no change in either the spectra nor the ratio of species was observed. Deuteriochloroform solutions of 3 decompose over *ca.* 2 d in air which contrasts with the stability of 1, 2 and 4. The presence of both 3a and 3b in solution is also mirrored in the ¹H NMR spectrum which shows two NH resonances (see Experimental section). The structure of 3b is not entirely apparent but we tentatively suggest it may be analogous to that of $[Ru_3(\mu_3-S)_2(CO)_7(bpcd)]$ IV [bpcd = 4,5bis(diphenylphosphino)-4-cyclopenten-1,3-dione],¹⁴ in which both P nuclei are bound to one ruthenium centre. In our hands we have so far been unable to separate these compounds by chromatography (TLC). However layering a CH₂Cl₂ solution of 3 with light petroleum (b.p. 40-60 °C) gave crystals of 3a suitable for X-ray crystallography. The structure of 3a is shown in Fig. 3 with selected bond lengths and angles collected in Table 3. In **3a** the S(1) and S(2) atoms lie ± 1.54 Å from the Ru₃ plane with the P-N-P ligand being inclined by only 16° to the Ru₃ plane. The Ru(1)-Ru(3) and Ru(2)-Ru(3) distances [2.811(1) and 2.771(1) Å] are similar to those in **1** and **2** but the $Ru(1) \cdots Ru(2)$ distance (3.56 Å) is essentially non-bonding. This distance is shorter than that observed in related Ru₃ clusters.¹⁴⁻¹⁸ This leads to an increase in the P-N-P angle to accommodate the larger bite in 3a versus 1 and 2 [the P-N-P angles are 137.7(3), 126.1(6) and 127.6(3)° respectively]. In contrast, experimental¹⁹ and calculated²⁰ P-N-P angles for free (Ph2P)2NH are 118.9(2) (from X-ray crystallography) and 122.62° respectively. Furthermore, the P-N-P angle in 3a is considerably larger than previously observed in other bi- and tri-metallic compounds of dppa [112.7(3)-125.2(6)° range] with M-M bonds.⁴ The P-N bond lengths in **3a** [1.691(5) Å for P(1)-N(1) and 1.697(5) Å for P(2)-N(1)] are similar to those in (Ph₂P)₂NH [1.692(3) Å]¹⁹ and **1** [1.675(11) Å for P(1)–N(1) and 1.694(11) Å for P(2)-N(1)]. The Ru(1) and Ru(2) centres are each bound to two terminal carbonyl ligands and Ru(3) is coordinated to three, whilst the Ru–P bond lengths in **3a** [2.267(2) and 2.281(2) Å] are as expected.

Further work currently in progress is aimed at seeking to extend the methodology to other bidentate phosphines with nitrogen-containing backbones.

Acknowledgements

We are grateful to the EPSRC for support.

References

- 1 W.-Y. Yeh, C. Stern and D. F. Shriver, Inorg. Chem., 1996, 35, 7857; C. Goh, B. M. Segal, J. Huang, J. R. Long and R. H. Holm, J. Am. Chem. Soc., 1996, 118, 11 844; S. Dehnen and D. Fenske, Chem. Eur. J., 1996, 2, 1407; P. Baistrocchi, M. Careri, D. Cauzzi, C. Graiff, M. Lanfranchi, P. Manini, G. Predieri and A. Tiripicchio, Inorg. Chim. Acta, 1996, 252, 367; F. Cecconi, C. A. Ghilardi, S. Midollini, A. Orlandini and A. Bencini, J. Chem. Soc., Dalton Trans., 1996, 3991; S. Behrens, M. Bettenhausen, A. C. Deveson, A. Eichhöfer, D. S. Bennens, M. Bertelmausen, A. C. Deveson, A. Elchnoler, D. Fenske, A. Lohde and U. Woggon, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 2215; V. W.-W. Yam, K. K.-W. Lo and K.-K. Cheung, *Inorg. Chem.*, 1996, **35**, 3459; V. W.-W. Yam, K. K.-W. Lo, C.-R. Wang and K.-K. Cheung, *Inorg. Chem.*, 1996, **35**, 5116; S. Kamiguchi, H. Imoto and T. Saito, *Chem. Lett.*, 1996, 555; G. M. Ferrence, P. E. Fanwick and C. P. Kubiak, Chem. Commun., 1996, 1575; A. Bencini, F. Fabrizi de Biani and M. G. Uytterhoeven, Inorg. Chim. Acta, 1996, 244, 231; J. Mizutani, S. Yamada, H. Imoto and T. Saito, Inorg. Chem., 1996, 35, 244; F. Cecconi, C. A. Ghilardi, S. Midollini, A. Orlandini, P. Zanello, A. Cinquantini, A. Bencini, M. G. Uytterhoeven and G. Giorgi, *J. Chem. Soc., Dalton Trans.*, 1995, 3881; L. C. Roof and J. W. Kolis, Chem. Rev., 1993, 93, 1037.
- 2 D. Cauzzi, C. Graiff, M. Lanfranchi, G. Predieri and A. Tiripicchio,
- *J. Chem. Soc., Dalton Trans.*, 1995, 2321. 3 P. Bhattacharyya and J. D. Woollins, *Polyhedron*, 1995, **14**, 3367; J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 2893 and refs. therein.
- 4 C. S. Browning, D. H. Farrar, D. C. Frankel and J. J. Vittal, Inorg. Chim. Acta, 1997, 254, 329; F. A. Cotton and F. E. Kühn, Inorg. Chim. Acta, 1996, 252, 257; D. L. Arnold, F. A. Cotton and F. E. Kühn, *Inorg. Chem.*, 1996, **35**, 4733, 5764; D. Pohl, J. Ellermann, M. Moll, F. A. Knoch and W. Bauer, *Z. Anorg. Allg. Chem.*, 1996, **622**, 283; D. Pohl, J. Ellermann, F. A. Knoch, M. Moll and W. Bauer, *Chem. Ber.*, 1994, **127**, 2167; *J. Organomet. Chem.*, 1994, **481**, 259; J. Ellermann and K. J. Meier, Z. Anorg. Allg. Chem., 1991, 603, 77; J. Ellermann, F. A. Knoch and K. J. Meier, Z. Naturforsch., Teil B, 1990, 45, 1657; M. T. Costello, D. R. Derringer, P. E. Fanwick, A. C. Price, M. I. Rivera, E. Scheiber, E. W. Siurek III and R. A. Walton, Polyhedron, 1990, 9, 573; D. E. Derringer, P. E. Fanwick, J. Moran

and R. A. Walton, Inorg. Chem., 1989, 28, 1384; R. Usón, J. Fornies, R. Navarro, M. Tomas, C. Fortuno, J. I. Cebollada and A. J. Welch, *Polyhedron*, 1989, **8**, 1045; R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and G. M. Sheldrick, *J. Chem. Soc.*, *Dalton Trans.*, 1986, 291; G. Liehr, G. Szucsányi and J. Ellermann, J. Organomet. Chem., 1984, 265, 95.

- 5 K. J. Edwards, J. S. Field, R. J. Haines, B. D. Homann, M. W. Stewart, J. Sundermeyer and S. F. Wollam, J. Chem. Soc., Dalton Trans., 1996, 4171; J. S. Field, R. J. Haines, M. W. Stewart and S. F. Woollam, J. Chem. Soc., Dalton Trans., 1996, 1031.
- 6 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, Chem. Commun., 1996. 2095.
- 7 I. Haiduc, in Inorganic Experiments, ed. J. D. Woollins, VCH, Weinheim, 1994.
- 8 P. Bhattacharyya, J. Novosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 1607.
- 9 D. Cupertino, R. Keyte, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Inorg. Chem., 1996, 35, 2695.
- 10 DIFABS, N. G. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, **39**, 158.
- 11 DIRDIF 92, PATTY, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
- 12 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Woodlands, TX, 1985, 1992.
- 13 D. Cupertino, R. Keyte, A. M. Z. Slawin, J. D. Woollins and D. J. Williams, Polyhedron, 1996, 15, 4441.
- 14 H. Shen, S. G. Bott and M. G. Richmond, Inorg. Chim. Acta, 1996, 241.71.
- 15 P. Baistrocchi, D. Cauzzi, M. Lanfranchi, G. Predieri, A. Tiripicchio and M. Tiripicchio Camellini, Inorg. Chim. Acta, 1995, 235, 173.
- 16 T. M. Layer, J. Lewis, A. Martín, P. R. Raithby and W.-T. Wong, J. Chem. Soc., Dalton Trans., 1992, 3411.
- 17 B. F. G. Johnson, T. M. Layer, J. Lewis, A. Martín and P. R. Raithby, *J. Organomet. Chem.*, 1992, **429**, C41. 18 B. F. G. Johnson, J. Lewis, P. G. Lodge and P. R. Raithby, *J. Chem.*
- Soc., Chem. Commun., 1979, 719.
- 19 H. Nöth and E. Fluck, Z. Naturforsch., Teil B, 1984, 39, 744.
- 20 C. S. Browning, D. H. Farrar and M. R. Peterson, J. Mol. Struct., 1991, **251**, 153.

Received 15th January 1997; Paper 7/00383H