# Reactions of $\left[\mathbf{R}_{2} \mathbf{P}(E)\right]_{2} \mathrm{NH}(\mathbf{R}=\mathrm{Ph}$ or Pri, $\mathrm{E}=\mathbf{S}$ or Se ) with $\left[R u_{3}(\mathrm{CO})_{12}\right]$ : crystal structures of $\left[R u_{4}\left(\mu_{4}-\mathrm{Se}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}-\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}{ }^{\prime}\right\}\right],\left[\mathrm{R} \mathrm{u}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Pr}{ }_{2}{ }_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ and $\left[R u_{3}\left(\mu_{3}-S\right)_{2}(\mathrm{CO})_{7}\left\{\left(\mathrm{Ph} h_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ 

A lexandra M . Z. Slawin, M artin B. Smith and J. D erek Woollins*<br>Department of Chemistry, L oughborough U niversity, L oughborough, Leics., UK LE 11 3T U


#### Abstract

Oxidative addition of the chalcogenides $\left[R_{2} P(E)\right]_{2} N H\left(R=P h\right.$ or $\mathrm{Pr}^{i}, \mathrm{E}=\mathrm{S}$ or Se) to the metal carbonyl $\left[R u_{3}(C O)_{12}\right]$ in the presence of $\mathrm{Me}_{3} \mathrm{NO}$ (ca. 1:1:1 ratio) in toluene gave, after chromatographic separation (preparativeTLC), new substituted tri- and tetra-nuclear capped sulfido (or selenido) ruthenium carbonyl complexes with $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}$ or $\left(\mathrm{Pr}_{2} \mathrm{P}_{2}\right)_{2} \mathrm{NH}$ ligands. All compounds have been characterised by a combination of multinuclear N M R [ ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and $\left.{ }^{1} \mathrm{H}\right]$, IR spectroscopy and elemental analysis. Furthermore the solid-state structures of three representative examples, namely $\left[R u_{4}\left(\mu_{4}-\mathrm{Se}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right],\left[R u_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}-\right.$ $\left.(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ and $\left[R u_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ have been determined by single-crystal $X$-ray diffraction. In all these cases the integrity of the $\left[R_{2} P(E)\right]_{2} N H$ ligand, under the experimental conditions employed, is not retained.


Transition-metal chalcogenide compounds have received considerable attention as exemplified by the plethora of publications reported within the last few years. ${ }^{1,2}$ One noticeable feature of many of these cluster compounds is the presence of both bridging chalcogenide anions and also tertiary phosphorus(III) ligands. The use of phosphorus(v) chalcogenide compounds, $\mathrm{R}_{3} \mathrm{PE}$, ( $\mathrm{E}=$ chalcogen, $\mathrm{R}=$ alkyl or aryl group) as sources of $R_{3} P$ and $E$ has previously been documented. Recent work by Predieri and co-workers ${ }^{2}$ demonstrated that $\left[\mathrm{Ph}_{2} \mathrm{P}\right.$ (Se) $]_{2} \mathrm{CH}_{2}$ undergoes oxidative addition to the metal carbonyl $\left[R u_{3}(C O)_{12}\right]$ affording a range of clusters (see later) including the novel cubane $\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{Se}\right)_{4}(\mathrm{CO})_{10}(\mathrm{dppm})\right]\left[\mathrm{dppm}=\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2}\right.$ $\mathrm{CH}_{2}$ ].

We, and others, have been interested in the co-ordination chemistry of both $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}$ and $\left[\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E})\right\}_{2} \mathrm{~N}\right]^{-}(\mathrm{E}=\mathrm{O}$, S or $\mathrm{Se})$, the latter derived upon deprotonation of $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E})\right]_{2} \mathrm{NH}$ with base ${ }^{3}$ A lthough numerous examples of bi- and tri-metallic complexes with the amine-backboned ligand $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}$ (dppa), closely related to $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}$, have been described, to our knowledge there are no reports of such compounds with ruthenium. ${ }^{4}$ Diruthenium complexes with the diphosphazene bridges ( RO$)_{2} \operatorname{PNEtP}(O R)_{2}(R=M e$ or Pri) have previously been reported. ${ }^{5} \mathrm{H}$ ere we describe our results on the reactivity of the tetraaryl-substituted $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E})\right]_{2} \mathrm{NH}$ ( $\mathrm{E}=\mathrm{S}$ and Se ), closely related to $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E})\right]_{2} \mathrm{CH}_{2}(\mathrm{E}=\mathrm{S}$ or Se$)$, and the tetraalkylsubstituted $\left[\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}$, with $\left[R u_{3}(\mathrm{CO})_{12}\right]$. The clusters $\left[\mathrm{Ru}_{4}\right.$ $\left.\left(\mu_{4}-\mathrm{Se}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right], \quad\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})\right.$ $\left.(\mathrm{CO})_{8}\left\{\left(\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\right.\right.$ $\left.P, P^{\prime}\right\}$ ] have been fully characterised, including by $X$-ray crystallography. Interestingly the recently reported reaction of the mixed phosphorus(v) compound $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{N} \mathrm{PPh}_{2} \mathrm{PPh} h_{2} \mathrm{P}(\mathrm{Se})$ $\mathrm{Ph}_{2}$ with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ in the presence of $\mathrm{M}_{3} \mathrm{NO}$ afforded an unusual triruthenium cluster, namely $\left[R u_{3}(C O)_{6}\left(\mu_{3}-S e\right)_{2}(\mu-\right.$ $\left.\left.P P h_{2}\right)\left(\mathrm{Ph}_{2} \mathrm{PN} \mathrm{PPh}_{2} \mathrm{~N} P \mathrm{Ph}_{2}-\mathrm{N}, \mathrm{P}, \mathrm{P}^{\prime}\right)\right]$, containing both the $\left[\mathrm{Ph}_{2} \mathrm{P}-\right.$ $\mathrm{NPPh} \mathrm{N}_{2} \mathrm{NPh} \mathrm{Z}_{2}{ }^{-}$ligand in a novel tridentate bonding mode and also capping diselenide ligands. ${ }^{6}$

## Experimental

## General

All reactions were performed under a nitrogen atmosphere using predried $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{M}$ e and standard Schlenk techniques. The
compounds $\left[R_{2} P(E)\right]_{2} N H(R=P h$ or Pri; $E=S$ and Se, but not all permutations) were synthesized as reported previously. ${ }^{7-9}$ The compounds $\left[R u_{3}(\mathrm{CO})_{12}\right]$ and $\mathrm{Me} e_{3} \mathrm{NO}$ were used as supplied by A Idrich without further purification.
Infrared spectra were recorded either as K Br pellets or in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a Perkin-Elmer System 2000 Fourier-transform spectrometer, ${ }^{1} \mathrm{H}$ N M R spectra ( 250 M Hz ) on a Bruker AC250 Fourier-transform spectrometer with chemical shifts ( $\delta$ ) in ppm ( $\pm 0.01$ ) to high frequency of $\mathrm{SiM}_{4}$ and coupling constants (J) in $\mathrm{Hz}\left( \pm 0.1 \mathrm{~Hz}\right.$ ), ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NM}$ R spectra ( 36.2 or 101.3 M Hz ) either on a JEOL FX 900 or Bruker AC 250 Fourier-transform spectrometer with chemical shifts ( $\delta$ ) in ppm ( $\pm 0.1$ ) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and coupling constants (J) in $\mathrm{Hz}( \pm 3)$. All NMR spectra were measured in $\mathrm{CDCl}_{3}$ unless otherwise stated. Elemental analyses (Perkin-Elmer 2400 CH N elemental analyser) were performed by the Loughborough University Service within the D epartment of Chemistry.

## Preparations

Reaction of $\left[R u_{3}(\mathrm{CO})_{12}\right]$ with $\left[\mathrm{P} \mathrm{h}_{2} \mathrm{P}(\mathrm{Se})\right]_{2} \mathrm{NH}$. The reagents $\left[R u_{3}(\mathrm{CO})_{12}\right](0.100 \mathrm{~g}, 0.156 \mathrm{mmol}),\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})\right]_{2} \mathrm{NH}(0.086 \mathrm{~g}$, $0.158 \mathrm{mmol})$ and $\mathrm{M}_{3} \mathrm{NO}(0.013 \mathrm{~g}, 0.173 \mathrm{mmol})$ were refluxed in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{M} \mathrm{e}\left(90 \mathrm{~cm}^{3}\right)$ for 1.5 h under $\mathrm{N}_{2}$. The resulting dark red solution was evaporated to dryness and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. One product $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{Se}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}-\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] \mathbf{1}$ (distinct deep orange band) was separated by preparative thin-layer chromatography $\left[\mathrm{SiO}_{2}\right.$; eluent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (b.p. $\left.40-60^{\circ} \mathrm{C}\right)(2: 1, \mathrm{v} / \mathrm{v})$ ]. In addition several other bands were collected from which only minor amounts of uncharacterised material were obtained. Cluster 1 was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ and light petroleum ( $15 \mathrm{~cm}^{3}$ ), the solid washed with portions of light petroleum $\left(2 \times 2 \mathrm{~cm}^{3}\right)$ and dried in vacuo. Yield: $0.074 \mathrm{~g}, 39 \%$ [Found (Calc. for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{NO}_{9.5} \mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{Se}_{2}$ ): C, 32.9 (32.8); H, 1.0 (1.85); $\mathrm{N}, 0.95(1.15) \%$ ]. IR: ( K Br ) $3263\left(v_{\mathrm{NH}}\right) ;\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2046 \mathrm{~m}$, 2013vs, 1967m and 1808w cm ${ }^{-1}\left(v_{\text {co }}\right)$. NM R: ${ }^{31 P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 67.3 ;$ ${ }^{1} \mathrm{H}, \delta 7.53-7.41$ (aromatic H ) and $4.86(\mathrm{NH})\left[{ }^{2} \mathrm{I}(\mathrm{P}-\mathrm{NH}) 10 \mathrm{~Hz}\right.$. Slow diffusion of light petroleum into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex 1 over the course of ca. 3 d gave crystals suitable for X -ray crystallography.
In a similar manner the cluster $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}{ }^{-}\right.$ $\left.\left\{\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 2$ was isolated in low yield (9\%) from

$\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{E}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{R}_{2} \mathrm{P}\right)_{2} \mathrm{X}\right\}\right]$
I $\mathrm{E}=\mathrm{Se}, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{CH}_{2}$
$1 \mathrm{E}=\mathrm{Se}, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{NH}$
$2 \mathrm{E}=\mathrm{S}, \mathrm{R}=\mathrm{Pr}^{\mathrm{i}}, \mathrm{X}=\mathrm{NH}$
$4 \mathrm{E}=\mathrm{S}, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{NH}$
$\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{Se}\right)_{4}(\mathrm{CO})_{10}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}\right\}\right]$
III

$\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{E}\right)_{2}(\mathrm{CO})_{7}\left\{\left(\mathrm{R}_{2} \mathrm{P}\right)_{2} \mathrm{X}\right\}\right]$
II $\mathrm{E}=\mathrm{Se}, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{CH}_{2}$
3a $\mathrm{E}=\mathrm{S}, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{NH}$

$\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{X}\right\}\right]$
IV $\mathrm{X}=\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{O}_{2}$
3b $\mathrm{X}=\mathrm{NH}$
$\left[\mathrm{Ru} \mathrm{B}_{3}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}$ [Found (Calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{9}-$ $\mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{~S}_{2}$ ): C, 26.05 (26.0); H, 2.65 (3.0); N, 1.5 (1.45)\%]. IR: (K Br) $3291\left(\mathrm{v}_{\mathrm{NH}}\right) ;\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2048 \mathrm{~m}, 2014 \mathrm{vs}, 2005 \mathrm{~m}$ (sh), 1984w, 1969m, 1939w and 1811w $\mathrm{cm}^{-1}\left(\mathrm{v}_{\mathrm{co}}\right)$. N M R : ${ }^{31 \mathrm{P}}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 96.0$; ${ }^{1} \mathrm{H}, \delta 3.11(\mathrm{NH})\left[{ }^{2} \mathrm{~J}(\mathrm{P}-\mathrm{NH}) 10 \mathrm{~Hz}\right]$ in addition to the expected isopropyl resonances. Slow diffusion of light petroleum into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex 2 over the course of several months gave crystals suitable for X-ray crystallography.

Reaction of $\left[R u_{3}(C O)_{12}\right]$ with $\left[P h_{2} P(S)\right]_{2} N H$. The reagents $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right](0.102 \mathrm{~g}, 0.160 \mathrm{mmol}),\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}(0.072 \mathrm{~g}$, $0.160 \mathrm{mmol})$ and $\mathrm{M}_{3} \mathrm{~N} 0(0.014 \mathrm{~g}, 0.186 \mathrm{mmol})$ were refluxed in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\left(90 \mathrm{~cm}^{3}\right)$ for 1.5 h under $\mathrm{N}_{2}$. The resulting dark orange solution was evaporated to dryness and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. Two major products 3 (deep orange band) and then $\mathbf{4}$ (deep red band) were separated by preparative thin-layer chromatography [ $\mathrm{SiO}_{2}$; eluent, dichloromethanelight petroleum ( $1: 1, \mathrm{v} / \mathrm{v}$ )] in addition to several other bands. Cluster 3 was isolated as an orange solid. Y ield: $0.048 \mathrm{~g}, 32 \%$ [Found (Calc. for $\mathrm{C}_{31.50} \mathrm{H}_{22} \mathrm{CIN} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}_{2}$ ): $\mathrm{C}, 37.1$ (38.15); H , 2.1 (2.25); N, 1.45 (1.4)\%]. IR: (K Br) 3313, 3302, 3281 ( $\mathrm{v}_{\mathrm{NH}}$ ); $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2068 \mathrm{~m}, 2056 \mathrm{~s}, 2013 \mathrm{vs}, 1989 \mathrm{~m}$ (sh) and $1964 \mathrm{~m} \mathrm{~cm}^{-1}$ $\left(v_{\mathrm{co}}\right)$. NM R: ${ }^{31 \mathrm{P}}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 106.8$ and 75.0, 70.9 [ ${ }^{2}$ (PP) 38 Hz ] (ca. 1:1 ratio of two species 3 a and $\mathbf{3 b}$ from integration); ${ }^{1} \mathrm{H}, \delta$ 7.71-7.38 (aromatic H), 4.75 and 3.07 (both NH) [ $\left.{ }^{2}\right](\mathrm{P}-\mathrm{NH}$ ) 7.5 Hz ]. Slow diffusion of light petroleum into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex 3 over the course of ca. 4 d gave crystals of $\left[R u_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{7}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ 3a suitable for X -ray crystallography. The cluster $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\right.\right.$ $\left.\left.P, P^{\prime}\right\}\right] 4$ was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ and light petroleum ( $15 \mathrm{~cm}^{3}$ ), the solid washed with portions of light petroleum ( $2 \times 3 \mathrm{~cm}^{3}$ ) and dried in vacuo. Y ield: $0.051 \mathrm{~g}, 29 \%$ [Found (Calc. for $\mathrm{C}_{33} \mathrm{H}_{21} \mathrm{NO}_{9} \mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{~S}_{2}$ ): $\mathrm{C}, 36.1$ (35.85); $\mathrm{H}, 1.65$ (1.9); N , 1.1 (1.25)\%]. IR: ( K Br ) $3266\left(v_{\mathrm{NH}}\right)$; $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2050 \mathrm{~m}, 2016 \mathrm{vs}$, 1971 m and $1814 \mathrm{~m} \mathrm{~cm}{ }^{-1}\left(v_{c o}\right)$. N M R: ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 71.6 ;{ }^{1} \mathrm{H}, \delta$ 7.49-7.41 (aromatic H$)$ and $4.39(\mathrm{NH})\left[^{2} \mathrm{~J}(\mathrm{P}-\mathrm{NH}) 10 \mathrm{~Hz}\right.$.

## X-R ay crystallography

The crystal structures of complexes 1-3a were obtained using a Rigaku AFC7S diffractometer with graphite-monochromated ( $\mathrm{C} u-K \alpha, \lambda=1.54178 \AA$ ) radiation and $\omega$ scans at room temperature. $D$ etails of the data collections and refinements are given in Table 1. Empirical absorption corrections (DIFA BS) ${ }^{10}$ were applied. The structures were solved by the heavy-atom method. ${ }^{11}$ Compound $\mathbf{1}$ contained $0.5 \mathrm{H}_{2} \mathrm{O}$ as a solvent of crystallisation. The O atom was refined isotropically and the H atoms were not located. In 3 a a $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate was refined


Fig. 1 M olecular structure of $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{Se}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\right.\right.$ $\left.\left.P, P^{\prime}\right\}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O} 1(\mathrm{CH}, \mathrm{NH}$ protons and solvent molecules omitted for clarity)
with one $50 \% \mathrm{Cl}$ atom anisotropic and the $50 \% \mathrm{C}$ and two $25 \%$ Cl sites isotropic; the partial weight H atoms were not located. All of the other non-hydrogen atoms were refined anisotropically. The CH atoms were idealised and fixed ( $\mathrm{C}-\mathrm{H} 0.95 \AA$ ). No additional constraints or restraints were applied. Refinements (based on F) were by full-matrix least-squares methods. Calculations were performed using TEXSAN. ${ }^{12}$
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/489.

## Results and Discussion

The synthesis and spectroscopic characterisation of $\left[R u_{4}\left(\mu_{4}{ }^{-}\right.\right.$ $\left.\mathrm{Se})_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] \quad \mathrm{I}, \quad\left[\mathrm{Ru} u_{3}\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{7^{-}}\right.$ $\left.\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ II and $\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{Se}\right)_{4}(\mathrm{CO})_{10}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}{ }^{-}\right.\right.$ $\left.\left.\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ III containing the carbon-spaced diphosphine ligand $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}$, was recently reported by Predieri and co-workers. ${ }^{2}$ A dopting a similar procedure, we now find that analogues of I and II can be prepared in reasonable yields using the corresponding compounds $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E})\right]_{2} \mathrm{NH}$ ( $\mathrm{E}=\mathrm{Se}$ or S ). Hence refluxing $\left[R u_{3}(C O)_{12}\right], \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})\right]_{2} \mathrm{NH}$ and the oxidative decarbonylation reagent $\mathrm{M} \mathrm{e}_{3} \mathrm{NO}$ (ca. 1:1:1.1 ratio) in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ under $\mathrm{N}_{2}$ affords $\left[\mathrm{Ru} \mathrm{u}_{4}\left(\mu_{4}-\mathrm{Se}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 1$ in $39 \%$ yield after chromatography (preperative TLC) compared to only $5 \%$ yield reported for I. ${ }^{2}$ We also observe the formation of a variety of other minor products from this reaction; the exact identity of these remains currently unknown. Complex 1 was initially characterised by ${ }^{31} \mathrm{P}-\left\{^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR,IR spectroscopy and elemental analysis. The ${ }^{31} \mathrm{P}-$ ¹ $\left.^{1} \mathrm{H}\right\}$ NM R spectrum showed a singlet at $\delta 67.3$ shifted to high frequency with respect to free dppa ( $\delta 43.2$ ) by ca. 24 ppm . In the ${ }^{1} \mathrm{H}$ NM R spectrum ( $\mathrm{CDCl}_{3}$ ) the expected triplet at $\delta 4.86$ for the NH proton ${ }^{[ }{ }^{2}(\mathrm{P}-\mathrm{NH}) 10 \mathrm{~Hz}$ ] was observed, suggesting the equivalence of the two phosphorus nuclei. In contrast, for free $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH} \delta(\mathrm{NH}) 3.15{ }^{2} \mathrm{I}(\mathrm{P}-\mathrm{NH}) 5 \mathrm{~Hz}$ ]. In the IR spectrum ( K Br disc) of 1 a sharp band at $3263 \mathrm{~cm}^{-1}$ was observed and assigned as $v_{\mathrm{NH}}$, whilst in solution ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) bands at 2046, 2013, 1967 and $1808 \mathrm{~cm}^{-1}$ indicate that 1 contains both terminal and bridging carbonyl ligands. U nder similar conditions reaction of the tetraalkyl-substituted disulfide $\left[\mathrm{Pr}_{2}^{\mathrm{P}} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}$ gave $\left[R u_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{P}\right)_{2} \mathrm{NH}\right\}\right] 2$ albeit in low yield (9\%) along with several other uncharacterised products. The
${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectrum showed a singlet at $\delta 96.0$ \{cf. 91.2 ppm for $\left.\left[\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}\right\}^{9}$ and in the ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum ( $\mathrm{CDCl}_{3}$ ) the expected triplet at $\delta 3.11$ for the NH proton [ ${ }^{2}$ ] ( $\mathrm{P}-\mathrm{NH}$ ) 10 Hz ] was observed, suggesting again the equivalence of the two phosphorus nuclei. Solutions of the nonacarbonyls $\mathbf{1}$ and $\mathbf{2}$ (or 4, see later) are stable in air for extended periods (ca. 20 d ) without decomposition. A lternatively when compound $\mathbf{1}$ (or 4) was refluxed in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ (under $\mathrm{N}_{2}$ ) for 24 h no significant decomposition was noted. In the IR spectrum ( K Br disc) of 2 a sharp band at $3291 \mathrm{~cm}^{-1}$ assigned to $v_{\mathrm{NH}}$ was also observed whilst in solution ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) bands at 2048, 2014, 2005, 1984, 1969, 1939 and $1811 \mathrm{~cm}^{-1}$ indicate that 2 contains both terminal and bridging carbonyl ligands.

The structures of $\mathbf{1}$ and $\mathbf{2}$ have been established by X -ray crystallography (Figs. 1, 2 and Table 2 respectively). Compounds $\mathbf{1}$ and $\mathbf{2}$ are essentially isostructural. The clusters adopt octahedral geometries with the four ruthenium atoms in a


Fig. 2 M olecular structure of $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Pr}_{2} \mathrm{i}^{2}\right)_{2} \mathrm{NH}\right.\right.$ $\left.\left.\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 2$ showing the core geometry only (isopropyl groups and the NH proton omitted for clarity)
square plane [maximum deviation from the $R u(1)-R u(2)-$ $R u(3)-R u(4)$ mean plane is 0.013 and $0.04 \AA$ for 1 and 2 respectively] and the chalcogenide dianions lying above and below the $\mathrm{Ru}_{4}$ plane [in 1 atoms $\mathrm{Se}(1)$ and $\mathrm{Se}(2)$ lie 1.64 and 1.65 $\AA$ above and below the $R u_{4}$ plane whilst in $\mathbf{2}$ atoms $\mathrm{S}(1)$ and $\mathrm{S}(2)$ lie 1.51 and $1.55 \AA$ from the plane]. The carbonyl group which bridges $R u(1)$ and $R u(2)$ is almost coplanar with the $R u_{4}$ plane [the $\mathrm{C}(3)$ atom lies 0.03 and $0.09 \AA$ out of the $R u_{4}$ plane for 1 and $\mathbf{2}$ respectively]. The Ru-Ru bond lengths are in the range 2.737(2) $[R u(3)-R u(4)]-2.851(2)[R u(1)-R u(4)] \AA$ for 1 and 2.729(1) $[R u(1)-R u(2)]-2.797(1)[R u(2)-R u(3)] \AA$ for 2. The $\mathrm{P}-\mathrm{N}-\mathrm{P}$ ligand is inclined to the $\mathrm{Ru}_{4}$ plane ( 43 and $41^{\circ}$ for $\mathbf{1}$ and 2 respectively) and furthermore in these ligands the $\mathrm{P}-\mathrm{N}$ bonds are normal single bonds and the N atom is almost perfectly trigonal. We are unaware of any metal complexes of $\left(\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{P}\right)_{2} \mathrm{~N} \mathrm{H}$ although there are a few reports on $\left[\left\{\mathrm{Pr}_{2}{ }_{2} \mathrm{P}(\mathrm{S})\right\}_{2} \mathrm{~N}\right]^{-}$. 9,13


Fig. 3 M olecular structure of $\left[R u_{3}\left(\mu_{3}-S\right)_{2}(C O)_{7}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}\right.\right.$ $\left.\left.P, \mathrm{P}^{\prime}\right\}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{3 a}$ ( $\mathrm{CH}, \mathrm{NH}$ protons and solvent molecules omitted for clarity)

Table 1 D etails of the $X$-ray data collections and refinements for compounds 1-3a

|  | 1 | 2 | 3a |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{NO}_{9.5} \mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{Se}_{2}$ | $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{9} \mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{~S}_{2}$ | $\mathrm{C}_{31.50} \mathrm{H}_{22} \mathrm{ClNO}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}_{2}$ |
| M | 1208.69 | 969.81 | 991.25 |
| Crystal colour, habit | Red, needle | Orange-red, needle | Red, block |
| Crystal dimensions/mm | $0.01 \times 0.06 \times 0.28$ | $0.10 \times 0.13 \times 0.30$ | $0.20 \times 0.30 \times 0.30$ |
| Crystal system | M onoclinic | M onoclinic | Triclinic |
| Space group | P $21 / \mathrm{n}$ | P $21 / \mathrm{n}$ | P1 |
| a/Å | 15.656(3) | 13.363(2) | 12.276(2) |
| b/Å | 16.971(4) | 13.680(2) | 13.897(1) |
| c/Å | 16.488(3) | 17.294(2) | 11.660(2) |
| $\alpha /{ }^{\circ}$ |  |  | 104.32(1) |
| $\beta /{ }^{\circ}$ | 92.87(1) | 90.78(1) | 99.15(1) |
| $\gamma /{ }^{\circ}$ |  |  | 92.71(1) |
| $U / A^{3}$ | 4375 | 3161 | 1895 |
| Z | 4 | 4 | 2 |
| $\mathrm{D}_{\mathrm{c}} / \mathrm{gcm}{ }^{3}$ | 1.84 | 2.04 | 1.74 |
| $\mu / \mathrm{mm}^{-1}$ | 13.98 | 17.80 | 12.42 |
| $2 \theta_{\text {max }}{ }^{\circ}$ | 120.3 | 120.2 | 120.2 |
| F (000) | 2308 | 1888 | 970 |
| M easured reflections | 7051 | 5185 | 5963 |
| Independent reflections ( $\mathrm{R}_{\text {int }}$ ) | 6773 (0.098) | 4947 (0.043) | 5658 (0.072) |
| Observed reflections [l>3.00\%(I)] | 3485 | 3548 | 4910 |
| R eflection/parameter ratio | 7.5:1 | 10.1:1 | 11.4:1 |
| M inimum, maximum transmission | 0.67, 1.00 | 0.59, 1.00 | 0.90, 1.00 |
| $P$ in weighting scheme* | 0.005 | 0.002 | 0.004 |
| No. variables | 465 | 353 | 437 |
| Final R, R ** | 0.044, 0.050 | 0.032, 0.031 | 0.038, 0.041 |
| M aximum $\Delta / \sigma$ | 0.52 | 0.01 | 0.52 |
| L argest difference peak, hole/e $\AA^{-3}$ | 0.98, -0.48 | 0.50, -0.53 | 1.05, -0.79 |

* A II R indices and weighting scheme defined in ref. 12.

Table 2 Selected bond lengths ( $\AA$ ) and angles ( ${ }^{\circ}$ ) for compounds $\mathbf{1}$ and 2

|  | $1(\mathrm{E}=\mathrm{Se})$ | $2(E=S)$ |  | 1 (E = Se) | $2(\mathrm{E}=\mathrm{S})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ | 2.758(2) | 2.729(1) | Ru(3)-E (2) | 2.555(2) | 2.469(2) |
| $R u(1)-R u(4)$ | 2.851(2) | 2.787(1) | $\mathrm{Ru}(3)-\mathrm{P}(1)$ | 2.287(4) | 2.322(2) |
| $\mathrm{Ru}(1)-\mathrm{E}(1)$ | 2.578(2) | 2.516(2) | Ru(4)-E(1) | 2.552(2) | 2.439(2) |
| $\mathrm{Ru}(1)-\mathrm{E}(2)$ | 2.576(2) | 2.470(2) | $\mathrm{Ru}(4)-\mathrm{E}(2)$ | 2.579(2) | 2.494(2) |
| $\mathrm{Ru}(1)-\mathrm{C}(3)$ | 2.04(2) | 2.031(7) | Ru(4)-P(2) | 2.298(4) | 2.304(2) |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ | 2.828(2) | 2.797(1) | Ru-C range (terminal) | 1.80(2)-1.91(2) | 1.846(8)-1.899(8) |
| $\mathrm{Ru}(2)-\mathrm{E}(1)$ | 2.571(2) | 2.450(2) | $\mathrm{P}(1)-\mathrm{N}$ | 1.675(11) | 1.694(5) |
| Ru(2)-E(2) | 2.589(2) | 2.525(2) | $\mathrm{P}(2)-\mathrm{N}$ | 1.694(11) | 1.687(6) |
| Ru(2)-C(3) | 2.03(2) | 2.032(7) | $\mathrm{C}(3)-0$ (3) (bridging) | 1.16(2) | 1.167(8) |
| $R u(3)-R u(4)$ | 2.737(2) | 2.730(1) | C-O range (terminal) | 1.09(2)-1.19(2) | 1.13(1)-1.16(1) |
| $\mathrm{Ru}(3)-\mathrm{E}(1)$ | 2.567(2) | 2.457(2) |  |  |  |
| $R u(2)-R u(1)-R u(4)$ | 89.7(1) | 90.0(1) | $\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{P}(1)$ | 93.8(1) | 91.3(1) |
| $R u(2)-R u(1)-E(1)$ | 57.5(1) | 55.5(1) | $E(1)-R u(3)-E(2)$ | 79.9(1) | 76.6(1) |
| $R u(2)-R u(1)-E(2)$ | 58.0(1) | 57.9(1) | $E(1)-R u(3)-P(1)$ | 151.1(1) | 145.6(1) |
| $\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{E}(1)$ | 55.8(1) | 54.5(1) | $\mathrm{E}(2)-\mathrm{Ru}(3)-\mathrm{P}(1)$ | 87.0(1) | 94.8(1) |
| $R u(4)-R u(1)-E(2)$ | 56.5(1) | 56.2(1) | $\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$ | 89.8(1) | 90.1(1) |
| $E(1)-R u(1)-E(2)$ | 79.3(1) | 75.5(1) | $\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{E}(1)$ | 56.7(1) | 57.1(1) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$ | 89.9(1) | 89.9(1) | $R u(1)-R u(4)-E(2)$ | 56.4(1) | 55.4(1) |
| $R u(1)-R u(2)-E(1)$ | 57.7(1) | 57.8(1) | $R u(1)-R u(4)-P(2)$ | 138.7(1) | 132.2(1) |
| $R u(1)-R u(2)-E(2)$ | 57.5(1) | 55.9(1) | $\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{E}(1)$ | 58.0(1) | 56.4(1) |
| $\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{E}(1)$ | 56.5(1) | 55.4(1) | $R u(3)-R u(4)-E(2)$ | 57.4(1) | 56.2(1) |
| $R u(3)-R u(2)-E(2)$ | 56.1(1) | 55.0(1) | $R u(3)-R u(4)-P(2)$ | 92.6(1) | 95.7(1) |
| $E(1)-R u(2)-E(2)$ | 79.2(1) | 75.6(1) | $E(1)-R u(4)-E(2)$ | 79.8(1) | 76.4(1) |
| $R u(2)-R u(3)-R u(4)$ | 90.6(1) | 89.8(1) | $E(1)-R u(4)-P(2)$ | 149.5(1) | 152.0(1) |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{E}(1)$ | 56.7(1) | 55.1(1) | $E(2)-R u(4)-P(2)$ | 91.2(1) | 89.5(6) |
| $R u(2)-R u(3)-E(2)$ | 57.2(1) | 56.9(1) | Ru-E-Ru range | 64.4(1)-101.1(1) | 66.2(1)-105.9(1) |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{P}(1)$ | 133.9(1) | 144.4(1) | $\mathrm{Ru}(3)-\mathrm{P}(1)-\mathrm{N}$ (1) | 110.9(4) | 113.6(2) |
| $\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{E}(1)$ | 57.4(1) | 55.8(1) | $\mathrm{Ru}(4)-\mathrm{P}(2)-\mathrm{N}(1)$ | 112.2(4) | 109.8(2) |
| $R u(4)-R u(3)-E(2)$ | 58.2(1) | 57.1(1) | $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ | 126.1(6) | 127.6(3) |

Table 3 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for compound 3a

| $\mathrm{Ru}(1)-\mathrm{Ru}(3)$ | 2.811(1) | Ru(3)-S(1) | 2.406(2) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(1)-\mathrm{S}(1)$ | 2.367(2) | Ru(3)-S(2) | 2.411(2) |
| $\mathrm{Ru}(1)-\mathrm{S}(2)$ | 2.369(2) | $\mathrm{Ru}-\mathrm{C}$ range | 1.870(8)- |
| $\mathrm{Ru}(1)-\mathrm{P}(1)$ | 2.267(2) |  | $1.905(8)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ | 2.771(1) | $\mathrm{P}(1)-\mathrm{N}$ | $1.691(5)$ |
| $\mathrm{Ru}(2)-\mathrm{S}(1)$ | 2.373(2) | $\mathrm{P}(2)-\mathrm{N}$ | 1.697 (5) |
| $\mathrm{Ru}(2)-\mathrm{S}(2)$ | 2.372(2) | C-O range | $1.132(8)$ |
| $\mathrm{Ru}(2)-\mathrm{P}(2)$ | 2.281(2) |  | 1.149(9) |
| $R u(3)-R u(1)-S(1)$ | 54.6(1) | $R u(1)-R u(3)-S(2)$ | 53.3(1) |
| $R u(3)-R u(1)-S(2)$ | 54.7(1) | $\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{S}(1)$ | 54.0(1) |
| $\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 134.6(1) | $R u(2)-R u(3)-S(2)$ | 54.0(1) |
| $\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$ | 80.9(1) | S(1)-Ru(3)-S(2) | 79.3(1) |
| $\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 92.9(1) | $\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)$ | 97.4(1) |
| $\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$ | 93.3(1) | $\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(3)$ | 72.1(1) |
| $\mathrm{Ru}(3)-\mathrm{Ru}(2)-S(1)$ | 55.1(1) | $\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{Ru}(3)$ | 70.9(1) |
| $R u(3)-R u(2)-S(2)$ | 55.3(1) | $\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{Ru}(3)$ | 97.3(1) |
| $\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{P}(2)$ | 136.0(1) | $\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{Ru}(3)$ | 72.0(1) |
| $\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$ | 80.8(1) | $\mathrm{Ru}(2)-\mathrm{S}(2)-\mathrm{Ru}(3)$ | 70.8(1) |
| $S(1)-R u(2)-P(2)$ | 92.2(1) | $\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{N}$ | 115.8(2) |
| $\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{P}(2)$ | 94.7(1) | $\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{N}$ | 114.5(2) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$ | 79.3(1) | $\mathrm{P}(1)-\mathrm{N}-\mathrm{P}(2)$ | 137.7(3) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{S}(1)$ | 53.3(1) |  |  |

The corresponding reaction of the disulfide $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}$ with $\left[R u_{3}(C O)_{12}\right]$ yields, after chromatography, two major products identified as $\left[R u_{3}\left(\mu_{3}-S\right)_{2}(C O)_{7}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 3$ (32\%) (two isomers) and $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}\right.\right.$ $\left.\left.P, P^{\prime}\right\}\right] \mathbf{4}(29 \%)$. Compound $\mathbf{4}$ is ostensibly similar to both $\mathbf{1}$ and 2 described above and shows the expected spectroscopic properties. In contrast the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ( $\mathrm{CDCl}_{3}$ ) of 3 at ambient temperature reveals the presence of two species 3a and 3b (ca. 1:1 ratio by integration): 3a has $\delta 106.8$ (cf. 43.2 for dppa ) indicating equivalent phosphorus nuclei and $\mathbf{3 b}$ exhibits an A B spectrum [ 875.0 and 70.9 , ${ }^{2}$ ] (PP) 38 Hz ] consistent with a compound containing unsymmetrical phosphorus nuclei. When an N M R sample was cooled in $10^{\circ} \mathrm{C}$ increments from 0 to $-50^{\circ} \mathrm{C}$ no change in either the spectra nor the ratio of
species was observed. Deuteriochloroform solutions of 3 decompose over ca. 2 d in air which contrasts with the stability of $\mathbf{1 , 2}$ and $\mathbf{4}$. The presence of both $\mathbf{3 a}$ and $\mathbf{3 b}$ in solution is also mirrored in the ${ }^{1} \mathrm{H}$ NMR spectrum which shows two NH resonances (see Experimental section). The structure of $\mathbf{3 b}$ is not entirely apparent but we tentatively suggest it may be analogous to that of $\left[R u_{3}\left(\mu_{3}-S\right)_{2}(C O)_{7}(b p c d)\right]$ IV $[b p c d=4,5-$ bis(diphenylphosphino)-4-cyclopenten-1,3-dione], ${ }^{14}$ in which both P nuclei are bound to one ruthenium centre. In our hands we have so far been unable to separate these compounds by chromatography (TLC). H owever layering a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3 with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$ ) gave crystals of 3a suitable for X-ray crystallography. The structure of 3a is shown in Fig. 3 with selected bond lengths and angles collected in Table 3. In 3 a the $S(1)$ and $S(2)$ atoms lie $\pm 1.54 \AA$ from the $R u_{3}$ plane with the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ ligand being inclined by only $16^{\circ}$ to the $R u_{3}$ plane. The $R u(1)-R u(3)$ and $R u(2)-R u(3)$ distances [2.811(1) and $2.771(1) \AA$ ] are similar to those in 1 and 2 but the $R u(1) \cdots R u(2)$ distance ( $3.56 \AA$ ) is essentially non-bonding. This distance is shorter than that observed in related $R u_{3}$ clusters. ${ }^{14-18}$ This leads to an increase in the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle to accommodate the larger bite in 3a versus $\mathbf{1}$ and $\mathbf{2}$ [the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angles are 137.7(3), 126.1(6) and $127.6(3)^{\circ}$ respectively]. In contrast, experimental ${ }^{19}$ and calculated ${ }^{20} \mathrm{P}-\mathrm{N}-\mathrm{P}$ angles for free $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}$ are 118.9(2) (from X -ray crystallography) and $122.62^{\circ}$ respectively. Furthermore, the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle in 3 a is considerably larger than previously observed in other bi- and tri-metallic compounds of dppa [112.7(3)-125.2(6) ${ }^{\circ}$ range] with $\mathrm{M}-\mathrm{M}$ bonds. ${ }^{4}$ The $\mathrm{P}-\mathrm{N}$ bond lengths in 3a [1.691(5) $\AA$ for $\mathrm{P}(1)-\mathrm{N}(1)$ and $1.697(5) \AA$ for $\mathrm{P}(2)-\mathrm{N}(1)]$ are similar to those in $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}[1.692(3) \AA]^{19}$ and $1[1.675(11) \AA$ for $\mathrm{P}(1)-\mathrm{N}(1)$ and $1.694(11) \AA$ for $\mathrm{P}(2)-\mathrm{N}(1)]$. The $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ centres are each bound to two terminal carbonyl ligands and $R u(3)$ is coordinated to three, whilst the Ru-P bond lengths in 3a [2.267(2) and $2.281(2) \AA$ ] are as expected.

Further work currently in progress is aimed at seeking to extend the methodology to other bidentate phosphines with nitrogen-containing backbones.

## Acknowledgements

We are grateful to the EPSRC for support.

## $R$ eferences

1 W.-Y. Yeh, C. Stern and D. F. Shriver, Inorg. C hem., 1996, 35, 7857; C. G oh, B. M. Segal, J. Huang, J. R. Long and R. H. H olm, J. A m. Chem. Soc., 1996, 118, 11 844; S. D ehnen and D. Fenske, Chem. E ur. J., 1996, 2, 1407; P. Baistrocchi, M. Careri, D. Cauzzi, C. G raiff, M . Lanfranchi, P. M anini, G. Predieri and A. Tiripicchio, Inorg. Chim. Acta, 1996, 252, 367; F. Cecconi, C. A . G hilardi, S. M idollini, A Orlandini and A. Bencini, J. Chem. Soc., D alton Trans., 1996, 3991; S. Behrens, M. Bettenhausen, A. C. Deveson, A. Eichhöfer, D. Fenske, A. Lohde and U. Woggon, A ngew. Chem., Int. Ed. Engl., 1996, 35, 2215; V. W.-W. Yam, K. K.-W. Lo and K.-K. Cheung, Inorg. Chem., 1996, 35, 3459; V. W.-W. Yam, K. K.-W. Lo, C.-R Wang and K.-K. Cheung, Inorg. Chem., 1996, 35, 5116; S. K amiguchi, H. Imoto and T. Saito, C hem. Lett., 1996, 555; G. M. Ferrence, P. E. Fanwick and C. P. K ubiak, Chem. Commun., 1996 1575; A . Bencini, F. Fabrizi de Biani and M . G. U ytterhoeven, Inorg. Chim. Acta, 1996, 244, 231; J. M izutani, S. Y amada, H. Imoto and T. Saito, Inorg. Chem., 1996, 35, 244; F. Cecconi, C. A . G hilardi, S. M idollini, A . Orlandini, P. Zanello, A . Cinquantini, A . Bencini, M. G. U ytterhoeven and G. Giorgi, J. Chem. Soc., D alton Trans., 1995, 3881; L. C. Roof and J. W. Kolis, Chem. Rev., 1993, 93, 1037.

2 D. Cauzzi, C. Graiff, M. L anfranchi, G. Predieri and A. Tiripicchio, J. C hem. Soc., D alton Trans., 1995, 2321.

3 P. Bhattacharyya and J. D. Woollins, Polyhedron, 1995, 14, 3367; J. D. Woollins, J. Chem. Soc., D alton Trans., 1996, 2893 and refs. therein.
4 C. S. Browning, D. H. Farrar, D. C. Frankel and J. J. Vittal, Inorg. Chim. A cta, 1997, 254, 329; F. A. Cotton and F. E. K ühn, Inorg. Chim. Acta, 1996, 252, 257; D. L. A rnold, F. A. Cotton and F. E. K ühn, I norg. Chem., 1996, 35, 4733, 5764; D. Pohl, J. Ellermann, M . M oll, F. A. K noch and W. Bauer, Z . A norg. Allg. Chem., 1996, 622, 283; D. Pohl, J. Ellermann, F. A. K noch, M . M oll and W. Bauer, C hem. Ber., 1994, 127, 2167; J. Organomet. Chem., 1994, 481, 259; J. Ellermann and K . J. M eier, Z. A norg. Allg. Chem., 1991, 603, 77; J. Ellermann, F. A . K noch and K . J. M eier, Z. N aturforsch., Teil B, 1990, 45, 1657; M . T. Costello, D. R. D erringer, P. E. Fanwick, A. C. Price, M . I. R ivera, E. Scheiber, E. W. Siurek III and R . A. Walton, Polyhedron, 1990, 9, 573; D. E. D erringer, P. E. Fanwick, J. M oran
and R. A. Walton, Inorg. C hem., 1989, 28, 1384; R. U són, J. Fornies, R . N avarro, M . Tomas, C. Fortuno, J. I. Cebollada and A . J. Welch, Polyhedron, 1989, 8, 1045; R. U són, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., D alton Trans., 1986, 291; G. Liehr, G. Szucsányi and J. Ellermann, J. Organomet. Chem., 1984, 265, 95.

5 K . J. Edwards, J. S. Field, R. J. Haines, B. D. Homann, M. W. Stewart, J. Sundermeyer and S. F. Wollam, J. Chem. Soc., D alton Trans., 1996, 4171; J. S. Field, R. J. H aines, M. W. Stewart and S. F. Woollam, J. Chem. Soc., D alton Trans., 1996, 1031.
6 A. M. Z. Slawin, M . B. Smith and J. D. Woollins, Chem. Commun., 1996, 2095.
7 I. Haiduc, in Inorganic Experiments, ed. J. D. Woollins, VCH, Weinheim, 1994
8 P. Bhattacharyya, J. N ovosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., D alton Trans., 1995, 1607.

9 D. Cupertino, R. K eyte, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Inorg. Chem., 1996, 35, 2695.
10 DIFABS, N. G. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
11 DIRDIF 92, PATTY, P. T. Beurskens, G. A dmiraal, G. Beurskens, W. P. Bosman, S. G arcia-G randa, R . O. G ould, J. M . M . Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography L aboratory, U niversity of N ijmegen, 1992.
12 TEX SA N, Crystal Structure A nalysis Package, M olecular Structure Corporation, Woodlands, TX, 1985, 1992.
13 D. Cupertino, R . K eyte, A . M . Z. Slawin, J. D. Woollins and D. J. Williams, Polyhedron, 1996, 15, 4441.
14 H. Shen, S. G. Bott and M. G. R ichmond, Inorg. Chim. A cta, 1996, 241, 71.
15 P. Baistrocchi, D. Cauzzi, M . L anfranchi, G. Predieri, A . Tiripicchio and M. Tiripicchio Camellini, Inorg. C him. A cta, 1995, 235, 173.
16 T. M. Layer, J. Lewis, A . M artín, P. R . Raithby and W.-T. Wong, J. C hem. Soc., D alton Trans., 1992, 3411.

17 B. F. G. Johnson, T. M. Layer, J. Lewis, A. M artín and P. R. R aithby, J. Organomet. C hem., 1992, 429, C41.
18 B. F. G. Johnson, J. Lewis, P. G. Lodge and P. R. R aithby, J. Chem. Soc., C hem. C ommun., 1979, 719.
19 H . N öth and E. F luck, Z. N aturforsch., Teil B, 1984, 39, 744.
20 C. S. Browning, D. H. Farrar and M. R. Peterson, J. M ol. Struct., 1991, 251, 153.

R eceived 15th J anuary 1997; P aper 7/00383H

